WITH GRAPH PAPER

केन्द्रीय भारयमिक शिक्षा बोर्ड, दिल्ली सीनियर स्कूल सर्दिषिकेट परीक्षा (फक्षा बारहबी) परीक्षायी प्रवेश-पत्र के बनुसार परें	निक्साचोडं, दि॰ टपरीक्षा(क्स्मा ४ के यनुसार १	ी बारक्रवी) से
North Subject : MATHE MATICS	535	
That whis Subject Code: Q.44. Then with Subject Code: Q.44. Buy & Defect the Examination: Managhy 1.4.03.3016 The state of the support: EMSILESH	MONDAY ENGILESH	14.03.3016
Spen man shi gate fensk white code has as without as the copin the question paper. 659/	Code Numbor 65/12/5	Set Numbor
अतिरिक्तः उत्तर-पुरिज्ञान (अन्) को संख्यः No. of supplementary naswer-haskisj used	pasn (s)	NIL
विकासमा व्यक्ति Person with Disabilities	24-1-46 Vest No.	No
कैसी सभीविक अदमक्त से इमाति। हो से उन्होंद्र कर से 🗸 का निशान जनाएँ If physically challenged, isk the critegory	ं ट्रंटीट कर है pry	🗸 अ ोशानजगाएँ।
(C) (C) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D	0	[4]
Be y Patha De san a sike He mittan sank desam, 3 - kilikur Ce-bratikan, Austikikan Be Visiali molical De beeng molical Hertipersiy Contages Se Specie, Ce-Bosheri At Autist	Constitutions	S - FIRSton

Field felter for refrest in smaller and due fina he felt North Representation of the mann, in one Carolifonic's Norm encodes 3d letters, when the 24 kms. ेकर कार है हुए क्या गिया तन के क्या गाने में यह तह तह है। वह प्रेस में की प्रति है। वह प्रति है। वह प्रति है। यह प्रति कारों में की किया गाने में अने कर कुछ है। में में में all gitelin E.O. surfacth are ad-attreduces on error. If Mandy thekengoo, Panke a servano cood.

ž

VRS / No

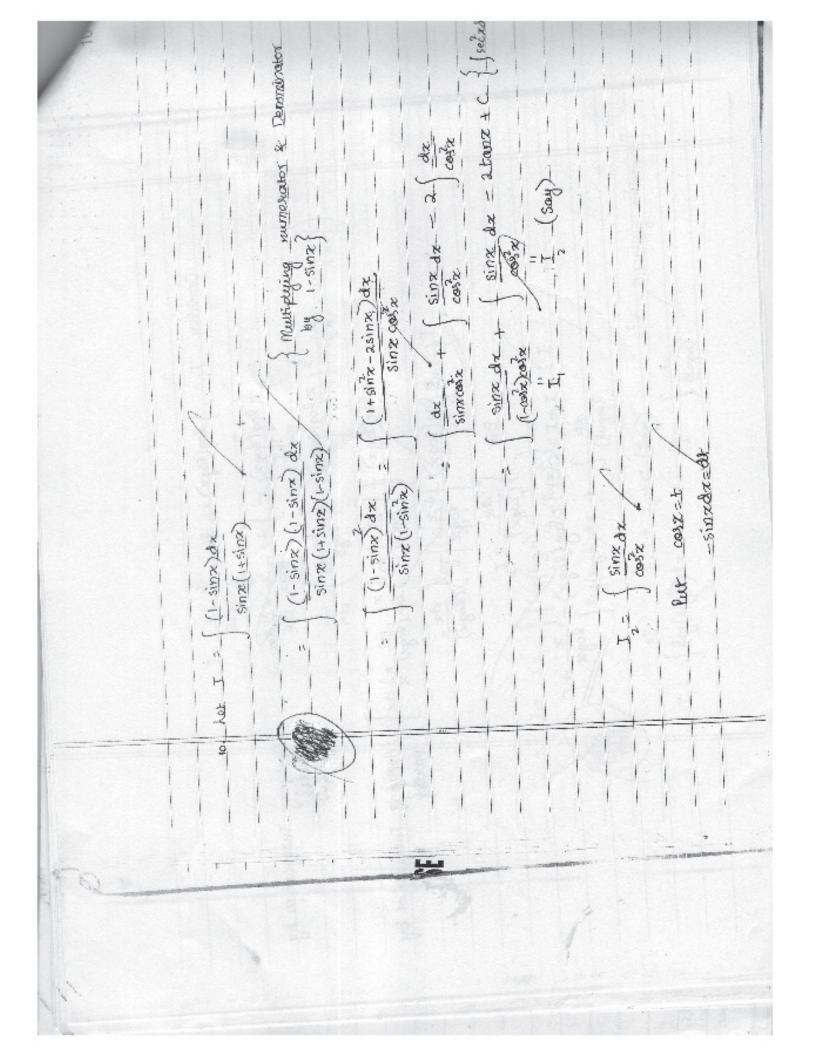
whether writer provided: Yes : A 7 add

वासीवय उपरोग के सिव् Space for office use

|--|

75	(1			1,00		188	
-3	udean usectors a R			F		ng individual terr	
	(6: Angle her	90			9 7		
161= ff 10x6	= 15/16/sin8	2	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 2 5	2k -5k	0 34 0 ak	
3. (4)21		19-2 19-2	100	#	But gi	ic *	4
	(0) 22	(a) = 1 [b] = 4 [axb] = 13 [axb] = 13	3. a = \frac{1}{2} b = \frac{1}{2} axb = a b sin B = a b sin B = a b sin B = a b as B a	3. a = \frac{1}{2} b = \frac{4}{2} axb = a b \sin \text{3} axb = a b \sin \text{3} axb = a b axb = a axb = a	3. a = \(\frac{1}{2} \) a = \(\frac{4}{2} \) a = \(\frac{4}{2} \) a = \(\frac{4}{2} \) a = \(\frac{1}{2}	3. a = \frac{1}{2} b = \frac{4}{2} axb = \frac{1}{2} a b \sin \text{sin \text{8}} \\	3

н


3x(-4):4a a= 3 -5k=5b b=-k=4	$= A B $ (Provided A & B one square matrice $\begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$ $B = \begin{bmatrix} 1 & -4 \\ 3 & -2 \end{bmatrix}$ $B = \begin{bmatrix} 1 & -4 \\ 3 & -2 \end{bmatrix}$ $B = \begin{bmatrix} 1 & -4 \\ 3 & -2 \end{bmatrix}$ $B = \begin{bmatrix} 1 & -4 \\ 3 & -1 \end{bmatrix}$ $B = \begin{bmatrix} 1 & -4 \\ 3 & -1 \end{bmatrix}$ $B = \begin{bmatrix} 1 & -4 \\ 3 & -1 \end{bmatrix}$ $B = \begin{bmatrix} 1 & -4 \\ 3 & -1 \end{bmatrix}$ $B = \begin{bmatrix} 1 & -4 \\ 3 & -1 \end{bmatrix}$ $B = \begin{bmatrix} 1 & -4 \\ 3 & -1 \end{bmatrix}$ $B = \begin{bmatrix} 1 & -4 \\ 3 & -1 \end{bmatrix}$ $B = \begin{bmatrix} 1 & -4 \\ 3 & -1 \end{bmatrix}$	13 -2 1861 - 7410 = 1811 # 1 1811 # 1
	5. ABE 2. ABE 3. A	6. [Alz 5. 12.]

f(z)dx = \(\frac{4(a-x)}{a} \)		81/2+co22=1} {cos(4-B) = cos Acos B+517A51 nB	21 2 d2 A2 B12 Sin#	1 2 dex	W Ze Z Le Z
	Z-z)	Sinx+cosx	ala da da	Pur 2-1 = +	For 200, to Th , for
Act I = 3 Sinzacos 2 dz -0	$\frac{\pi}{\Gamma} = \frac{\sin(\frac{\pi}{2} - x) + \cos(\frac{\pi}{2} - x)}{\sin x + \cos x} dx$	(8 8 C	Is I ada		

CO	$- \log \sec(\frac{\pi}{4}) + \cos(\frac{\pi}{4}) $		{ c = Arbitramy constant?	L
	I = 1 4 Sect dt ==================================	2 20g (52+1) 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\frac{q}{2} \int_{\mathbb{R}^{2}} \left[\log \left(\log_{x} \right) + \frac{1}{2} \right] dx$ $= \int_{\mathbb{R}^{2}} \log \left(\log_{x} \right) dx + \int_{\mathbb{R}^{2}} \frac{dx}{\log_{x}}$ $= \int_{\mathbb{R}^{2}} \log \left(\log_{x} \right) dx + \int_{\mathbb{R}^{2}} \frac{dx}{\log_{x}}$	
			THE PARTY NAMED IN COLUMN TO THE PARTY NAMED	

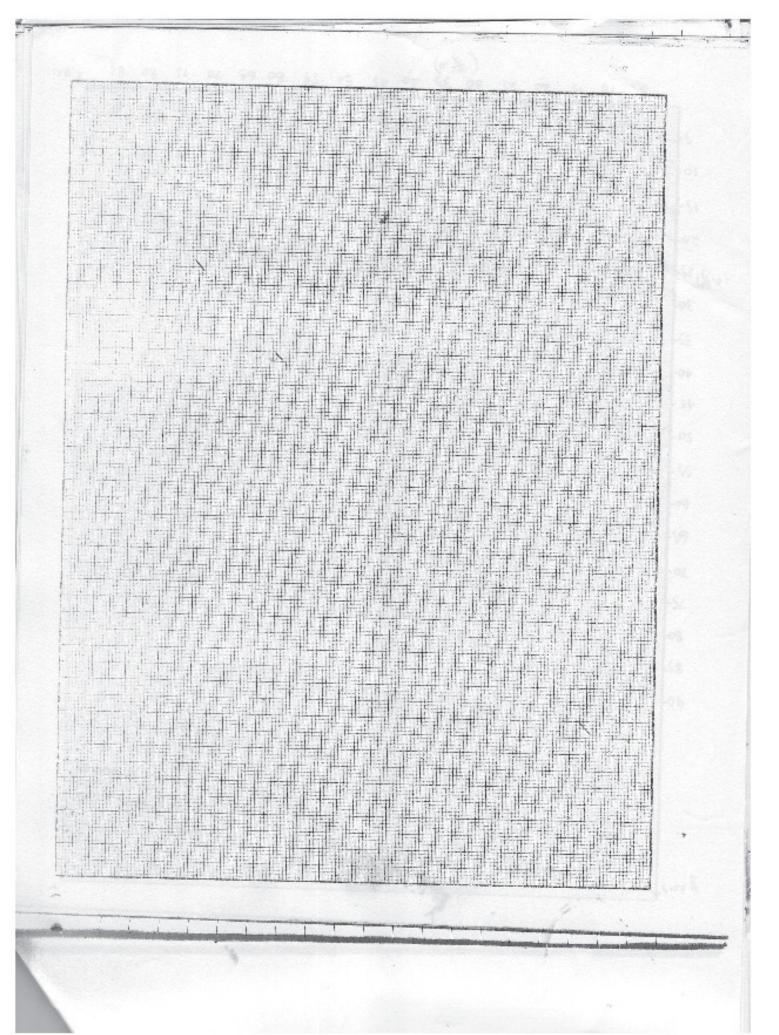
6		Partying Integration by	Especying Integration by			
	Camsidesy I, = Seq(leg 2) *1 d2	= x log(kogx) - (xx 1 + + dx = x logx =	= xlog(logx) - 2 - 2 - 1 x - 1 dx	$I_{r} = 2 \log(\log x) - \frac{x}{\log x} - \left(\frac{dx}{\log x}\right)$ $\lim_{x \to \infty} \frac{\log x}{\log x} = I$	" I = I+I+C = 280g(logx) - 2 + C	
7						
Valua de						

-CE

To the second se					du = (du	3) (4+1)-(4-1) du	R is an	arbitrasy constant.
	3ec 2 4 C		$\left\{ (u^2 - (u^2 - i)) du \atop (u^2 - i) u^2 \right\}$	\ \frac{dut}{u^2-1} - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- 800 W-1 + 1 + C { }	1 100 cosx -1 + Secx + c 3	+2 Secz - atama + k	avebitza
	dx + + + + + + + + + + + + + + + + + + +	****	-dm : (due :			T : 1	= 1000 cosx-1	
	I, = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Pur assess	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				T. = (1-sinx)dx	

of normal to the curyur at (and y-and -3 and = -22 + 3 and	Sany+2x = 3am + 3am + 3am = 15 the required equation. Lanz-sinx xxo tonz-sinx xxo f(x) is continuous at x=0	Now Sim $f(z)$: $f(\varphi)$	$\lim_{x \to 0} \frac{f(x)}{x \to 0} = \lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{1 - \cos x}{\cos x_{1} x^{2}}$
Equation	1 f(z) = k sin = tanz = s f(z) is con	が	dim f(x)= bim x >>0

	1-cong 8 = 25in 3	$\frac{1}{14} \frac{1-x^2}{1+x^2} = \frac$	 $\frac{d_{(oo)}(z)}{d_{(oo)}(z')} \left(\frac{(I_1 + z' - I_1 - z')}{(I_1 + x'' + I_1 - z')} \right) = \frac{d}{db} \left(\frac{\pi}{4} - 0 \right) = \frac{d}{db} \left(\pi$	


17			= = 101-(ap+6)/4 (2-p)k
	- Here a: pî+gî+îk b: 5/43/14k : a-b+c - 3/12/14k+3/1+2-06	Equating components, P = 5+3 A = 4 + 4 = 8 Components, P = 5+3 Area of thingness in 546	1 2 x b + + + + + + + + + + + + + + + + + +
	2. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.		

10							
		7-1616z)	10 5	(tol			
	em, P(Es) p(c(E))	- 1(E))P(C+E1)+P(E,)-P(C E2)		plot be 2 plot plot be be lot	Dao A = C	A-5300	
	-By Bayes theorem,			Ast the breadily of the plot he 2. Now Reb = A (As Area of the Area of the	2) (b-20) = A-53 = 50b + 502 - 250	10b= 201+200 = 1 10b= 201+200 = 1	p+38=550 6
			 - -	13,	1 da	-qg	

$\begin{bmatrix} 1 & -1 / \lceil x \rceil = \lceil 50 \rceil \\ 2 & 1 / \lfloor b \rfloor = \lfloor 550 \rfloor \\ R & X & B \end{bmatrix}$. AX=B .: X= A'B	(a b)	TE	A= [2-1]	1+2 [21] 3 [2+	(2 1) (550) = 3 (450) = 1	150 B= 150 m	
		,,,,				10.48		

the wants to donate the plot to the school because he wants runal places to become developed & he is there by showing his kind heartedown Children showed have an opportunity to learn.	2ye yax+ (y-2xe 2) dy =0	4- 3xe 4 - = # (2,4) (say)	A - NY-27xe xy = 2° F(xy)	Z=vy	A sage	-aye, a
	346 8dx		(ga, 24) = (ba, 24) =	Pur	mo	

7 /1-00

à

	124 c 124	mg.
42+3y=80 3x+6y=100 8x+6y=160 5x=600	any paint of bx+64	A POSTA PROPERTY OF THE PROPER
	outd check if	2,32) lies of dies of 300
Lumber of units of site anim A=2 rumber of units of site anim A=2 rumber of units of site anim A=2 220 420 420 420 420 420 420 4	7. 166.67 2.124 m is untraunded, we should check if any paint other is in common to region shaded & 5x+6y < 124	Chearly, from the graph, only (12,32) lies on both regions. . The Minimum cost of the diet = 2.124 with 12 units of food F & 32 write of food F
Section-C notes of units of and	2.16667 2.124)	Mirimum Cunits of &
2 000	Sina the region (12,32)	Clearity, from
4		

Minimum values of the second logoesta	(x tanz + 2 (-sinz) = 2 2 II 2-224) tanz (secx-2) = 4 IT or 2 5 2 3	f'(x) < 0 for maximum $f'(x) > 0$ for maximum $f'(x) > 0$ for minimum $f'(x) > 0$ for minimum $f'(x) > 0$ for minimum $f'(x) > 0$ for maximum $f'(x) > 0$ for maximum $f'(x) > 0$ for $f'(x) > 0$ fo	attains maximen value at 2= Th & minimenn 2 = 2 log 2 & 2 log 3 1 2= The function becomes underlined. 1
ar Maxinusm &		(\$\frac{1}{2}\) = \frac{1}{2} \(\frac{1}{2}\) = \frac{1}{2} \(\fra	FERCHON SOLUE OF SOLUE F(Z) F(Z) F(Z) HENCHON MENTERUM MENTERUM

33	Equation of plans containing two parases lives (\$\alpha_{-} a_{\phi} \rightarrow \text{ parases lives} \text{ (inc. } \\ \alpha_{-} a_{\phi} \rightarrow \text{ parases lives} \\ \alpha_{-} a_{\phi} \rightarrow \text{ parases lives} \\ \alpha_{-} a_{\phi} \rightarrow \text{ parases lives} \\ \alpha_{-} a_{\phi} \rightarrow \text{ parases} \\ \alpha_{-} a_{\phi} \rightarrow \text{ parases a gar+ y-5z gar- } \\ \alpha_{-} a_{\phi} \rightarrow \text{ parases a gar+ y-5z gar- } \\ \alpha_{-} a_{\phi} \rightarrow \text{ parases a gar+ y-5z gar- } \\ \alpha_{-} \frac{\parases \text{ parases a gar+ y-5z gar- } \\ \alpha_{-} \frac{\parases \text{ parases a gar+ y-5z gar- } \\ \alpha_{-} \frac{\parases \text{ parases a gar+ y-5z gar- } \\ \alpha_{-} \frac{\parases \text{ parases a gar+ y-5z gar- } \\ \alpha_{-} \frac{\parases \text{ parases a gar- } \\
	8.5.

r r	1 18 + 15 2x+3-3 2
	6 (200-3)
	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	8 1
	\$ T4 8 41 1 8 1 8
	108 5(2)-4 102 422-4 102 422-4 102 422-4 102 422-4 103 422-4 103 1